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OVERVIEW

Large amount of work on weight-space generative models, e.g.
(Wang et al., 2025).

Existing work overlooks the geometry of NN weights, or only
models permutation symmetries.

We build fully geometric generative models accounting for
both permutation and scaling symmetries.
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FLOW MATCHING (LIPMAN ET AL., 2023)

Goal: Learn a time-dependent vector field vθ : [0, 1]× Rd → Rd

that transports density p0 to p1.

Design Choices & Training

Given samples x0 ∼ p0, x1 ∼ p1, define:

1. Coupling q(x0, x1) : p(x0)p(x1)
2. Probability path pt(xt | x0, x1) : N (xt | (1− t)x0 + tx1, σ2)

3. “True” vector field ut(xt | x0, x1) : x1 − x0

Optimize the conditional flow matching (CFM) objective:

θ∗ = argmin
Θ

Et∼U [0,1],(x0,x1)∼q,xt∼pt
[
∥vθ(t, xt)− ut(xt | x0, x1)∥2

]
Sampling

Integrate the ODE dx = vθ(t, xt)dt.
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EXTENSIONS OF FLOW MATCHING

Optimal Transport Couplings (Tong et al., 2023)

q(x0, x1) := π(x0, x1) π := approx. OT map

Flow model then approximates the dynamic OT map from p0 to
p1. Can lead to straighter/shorter trajectories.

Riemannain Flow Matching (Chen and Lipman, 2023) Model the
vector field over Riemannian manifolds.

xt := expx0(t logx0 x1) ut(xt | x0, x1) :=
logxt x1
1− t
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NEURAL NETWORK SYMMETRIES

Permutation symmetries between architectural components.
e.g. between subsequent layers in MLPs.

Scaling symmetries from non-linear activations.
e.g. ReLU: ReLU(λx) = λReLU(x) λ ≥ 0

Linear Mode Connectivity
Hypothesis: Low-loss
solutions linearly connected
up to permutation
symmetries.
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CANONICAL REPRESENTATIONS OF NNS (PITTORINO ET AL., 2022)

For ReLU MLPs:

1. Align all NNs to a single reference NN via rebasin.
2. Normalize incoming weights of each neuron, and inversely

multiply the outgoing weights.

Both operations preserve the function the NN computes.

=⇒ Neurons on the
hypersphere.
=⇒ Last layer on the
hypersphere.
=⇒ Biases as Euclidean
vectors.
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LEARNING IN WEIGHT-SPACE

Neural networks can be modeled as graphs through their
computational graphs.

Can be processed using graph neural networks.

We use the Relational Transformer (with edge updates)
(Kofinas et al., 2024; Diao and Loynd, 2023)
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FLOWS IN WEIGHT-SPACE

Pre-processing: Align all weights to a reference (rebasin).

Euclidean. Use the weights w/o further processing.

Normalized. Normalization + vector field in Euclidean space
(i.e. inside the hyperpsheres).

Geometric. Normalization + vector field on the product
geometry (Riemannain flow matching).
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FLOWS IN WEIGHT-SPACE

Training

p0: Zero-mean Gaussian. p1: Sampled from SGD trajectories.

Couplings: Independent, mini-batch OT.

Sample t ∼ Beta(1, 2) rather than uniformly, to optimize early
time points (higher loss) for more steps.

Sampling

Integrate ODEs with Euler solver:

x0 ∼ p0 , xt+∆t = xt + vθ(xt, t)∆t

Optional guidance with gradients from the base task:

xt+∆t = xt + (vθ(xt, t) + λ∇xtL(f, xt))∆t
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RESULTS



ONE-SHOT PERFORMANCE ON EASIER TASKS

Two-hidden-layer MLP (30-16-16-2) on the UCI Wisconsin
Breast Cancer dataset, binary classification.

All flows can sample high-quality individual weights, matching
or exceeding Adam-optimized weights. 9/21



MNIST - SAMPLE QUALITY AND DIVERSITY

Larger MLP (784-10-10) on MNIST, 10 classes.

Trained with ∼ 60K samples. 512 Euler steps to sample.

• Generated weights less accurate than optimized weights.
• Geometric flow with OT couplings performs the best.
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MNIST - POSTERIOR PREDICTIVE & GUIDANCE

Average predictions over generated weights:

• Significantly more accurate than individual weights.
• OT couplings improve performance in all setups.
• Guidance has little effect.
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TRANSFERABILITY - DATASETS

Use the MNIST flow for Fashion-MNIST (same architecture).
Three approaches:

1. Use the generated weights directly.
2. Guide sampling with gradients from Fashion-MNIST.
3. Init model with generated weights and train on

Fashion-MNIST.
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TRANSFERABILITY - DATASETS (GUIDANCE)

Guide sampling with gradients from Fashion-MNIST:

• Generated weights themselves perform poorly as
expected.

• Guidance for 512 steps significantly helps. Generated
weights reach the same accuracies they do on MNIST now
on a task harder to learn.
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TRANSFERABILITY - DATASETS (INITIALIZATION)

Initialize model using weights generated with the MNIST flow
(w/o guidance). Then train on Fashion-MNIST:

• Training converges faster, although towards similar levels
of performance.
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TRANSFERABILITY - ARCHITECTURES

A GNN is not limited to certain graph structures.

Sample weights for a 784-32-10 MLP using the flow trained on
784-10-10 weights, both on MNIST.

• Normalized flow fails but Euclidean and Geometric flows
succeed.

• Generated weights perform better than the weights the
flow was trained on. 15/21



CONTRIBUTIONS

Geometry of NN weights can be utilized to build generative models.

Such models can generalize to different tasks and architectures.

Future Directions

• Model further symmetries. Different architectures, activations,
data-dependent symmetries…

• Flows over distributions (e.g. Meta Flow Matching (Atanackovic
et al., 2024)) → weight-space “foundation models”?

• Guidance beyond task gradients. Further differentiable
objectives, condition on desired losses, ...

• Training without samples, given the likelihood function (work in
this line: (Akhound-Sadegh et al., 2024)).

Thesis & Slides: erdogan.dev/thesis.pdf /thesis_slides.pdf
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